organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8-Phenyl-3,4,6,7,8,8a-hexahydro-1Hpyrrolo[2,1-c][1,4]oxazin-6-one

Magdalena Małecka,^a* Beata Pasternak^b and Stanisław Leśniak^b

^aDepartment of Structural Chemistry and Crystallography, University of Łódź, Tamka 12. PL-91403 Łódź. Poland, and ^bDepartment of Organic and Applied Chemistry. University of Łódź, Tamka 12, PL-91403 Łódź, Poland Correspondence e-mail: malecka@uni.lodz.pl

Received 19 July 2011; accepted 12 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.047; wR factor = 0.109; data-to-parameter ratio = 11.7.

In the title compound, $C_{13}H_{15}NO_2$, the hexahydropyrrolo[2,1c][1,4]oxazine fragment is disordered over two conformations (A and B) in a 0.656 (5):0.344 (5) ratio. The five-membered ring is similarly disordered and adopts an envelope conformation in A, while in B this ring is nearly planar [maximum deviation = 0.088(1) Å]. The six-membered rings in both A and B exhibit chair conformations. In the crystal, weak intermolecular $C-H \cdots O$ hydrogen bonds link the molecules into ribbons propagating in [010].

Related literature

For the synthesis, see: Leśniak et al. (2009). For bond-length data, see: Allen et al. (1987). For the biological properties of similar structures, see: Nicolaou et al. (2002). For related structures, see: Chaume et al. (2008); Dorsey et al. (2003); Harwood et al. (1997).

Experimental

Crystal data

C ₁₃ H ₁₅ NO ₂	$V = 1091.72 (15) \text{ Å}^3$
$M_r = 217.27$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.2737 (12) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 7.1066 (4) Å	$T = 100 { m K}$
c = 11.9233 (10) Å	$0.36 \times 0.21 \times 0.03 \text{ mm}$
$\beta = 103.917 \ (7)^{\circ}$	

Data collection

Stoe IPDS 2 diffractometer 6960 measured reflections 2301 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.109$	H atoms treated by a mixture of independent and constrained
S = 0.81	refinement
301 reflections 96 parameters	$\Delta \rho_{\rm max} = 0.21 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

1200 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.108$

Table 1

Hydrogen-bond ge	ometry (A, \circ) .
------------------	-----------------------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2B \cdots O2^{i}$ $C7A - H7A \cdots O1^{ii}$	0.97 0.97	2.46 2.43	3.329 (3) 3.154 (4)	149 131
			. 3	

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: X-AREA (Stoe & Cie, 2000); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Financial support from University of Łódź (grant No. 505/ 721/R to MM) is gratefully acknowledged. The authors thank Dr Klaus Harms from Philipps University in Marburg (Germany) for collecting the data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5138).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. O., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-S19.

Chaume, G., Van Severen, M. C., Ricard, L. & Brigaud, T. (2008). J. Fluorine Chem. 129, 1104-1109.

Dorsey, A. D., Barbarow, J. E. & Trauner, D. (2003). Org. Lett. 5, 3237-3239. Harwood, L. M., Hamblett, G., Jimenez-Diaz, A. I. & Watkin, D. J. (1997). Synlett, pp. 935-938.

Leśniak, S., Pasternak, B. & Nazarski, R. (2009). Tetrahedron, 65, 6364-6369. Nicolaou, K. C., Baran, P. S., Zhong, Y. L. & Sugita, K. (2002). J. Am. Chem.

Soc. 124, 2212-2220.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie. (2000). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2011). E67, o2390 [doi:10.1107/S1600536811032806]

8-Phenyl-3,4,6,7,8,8a-hexahydro-1*H*-pyrrolo[2,1-*c*][1,4]oxazin-6-one

M. Malecka, B. Pasternak and S. Lesniak

Comment

In this paper we provide a new oxazin-6-on derivative prepared in one step synthesis in FVT (Leśniak *et al.*, 2009). The title compound (Fig. 1) represents an important structural unit found in biologically active compounds (Nicolaou *et al.*, 2002). The hexahydro-pyrrolo[2,1-*c*][1,4] oxazine fragment is disordered over two conformations - A and B, respectively - in a ratio 0.656 (5):0.344 (5). Disordered five-membered ring adopts an envelope conformation in A, while in B this ring is nearly planar. Six-membered ring in A and B exhibits a chair conformation. Bond lengths (Allen *et al.*, 1987) and angles are normal and correspond well to those observed in related structures (Chaume *et al.*, 2008; Dorsey *et al.*, 2003; Harwood *et al.*, 1997).

The packing of the molecules in the crystal lattice is stabilized *via* weak intermolecular C—H···O hydrogen bonds (Table 1), which link the molecules into ribbons propagated in [010].

Experimental

General procedure. The flash vacuum thermolysis reactions were carried out in a 30x2.5 cm electrically heated horizontally oriented quartz tube packed with quartz rings, at $1.5x10^{-3}$ Torr. The synthetic precursor (*E*)-1-morpholin-4-yl-3-phenylprop-2-en-1-one (2 mmol) was slowly sublimed at $80-100^{\circ}$ C from a flask held into thermolysis preheated to $950-1000^{\circ}$ C. The product thereby obtain was collected in a CO₂ acetone trap. After thermolysis, the whole system was brought to atmospheric pressure, allowing slow warming up to room temperature and the products were dissolved in CHCl₃. The solvent was removed under reduced pressure and 8-phenyl-hexahydro- pyrrolo[2,1-*c*][1,4]oxazin-6-one was purified chromatographically on SiO₂ and recrystallized from the hexane/CH₂Cl₂ (1:1) mixture.

Refinement

The morpholin group was treated as disordered over two conformations with occupancies refined to 0.656 (5) and 0.344 (5), respectively. All H-atoms were positioned geometrically and refined with a riding model; for methine H atoms U_{iso} were constrained to be 1.2 times U_{eq} of the carrier atom and C—H=0.98 Å.

Figures

Fig. 1. Molecular structure of I with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

8-Phenyl-3,4,6,7,8,8a-hexahydro-1*H*- pyrrolo[2,1-c][1,4]oxazin-6-one

Crystal data

C ₁₃ H ₁₅ NO ₂
$M_r = 217.27$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 13.2737 (12) Å
<i>b</i> = 7.1066 (4) Å
<i>c</i> = 11.9233 (10) Å
$\beta = 103.917 (7)^{\circ}$
$V = 1091.72 (15) \text{ Å}^3$
Z = 4

F(000) = 464 $D_x = 1.322 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2762 reflections $\theta = 1.6-27.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.36 \times 0.21 \times 0.03 \text{ mm}$

Data collection

Stoe IPDS 2 diffractometer	1200 reflections with $I > 2\sigma(I)$
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	$R_{\rm int} = 0.108$
planar graphite	$\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Detector resolution: 6.67 pixels mm ⁻¹	$h = -16 \rightarrow 16$
rotation method scans	$k = -8 \rightarrow 8$
6960 measured reflections	$l = -14 \rightarrow 15$
2301 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0509P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.81	$(\Delta/\sigma)_{\rm max} < 0.001$
2301 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
196 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.047 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	Uiso*/Ueq	Occ. (<1)
C6A	0.6366 (3)	0.7343 (6)	0.8977 (3)	0.0425 (9)	0.656 (5)
H6A	0.6341	0.8221	0.8348	0.051*	0.656 (5)
H6B	0.5799	0.7624	0.9333	0.051*	0.656 (5)
C6B	0.6801 (6)	0.6628 (11)	0.8736 (5)	0.0464 (18)	0.344 (5)
H6C	0.7183	0.5561	0.8543	0.056*	0.344 (5)
H6D	0.6709	0.7541	0.8115	0.056*	0.344 (5)
C5A	0.7290 (3)	0.6480 (5)	1.0830 (3)	0.0409 (9)	0.656 (5)
H5A	0.6657	0.6814	1.1054	0.049*	0.656 (5)
H5B	0.7878	0.6762	1.1466	0.049*	0.656 (5)
C5B	0.7692 (5)	0.5623 (12)	1.0597 (6)	0.0437 (17)	0.344 (5)
H5C	0.7980	0.4684	1.0172	0.052*	0.344 (5)
H5D	0.8204	0.5922	1.1304	0.052*	0.344 (5)
C7A	0.6287 (3)	0.5338 (5)	0.8537 (3)	0.0410 (9)	0.656 (5)
H7A	0.5612	0.5128	0.8019	0.049*	0.656 (5)
H7B	0.6814	0.5110	0.8112	0.049*	0.656 (5)
C7B	0.5784 (6)	0.6015 (11)	0.8900 (6)	0.051 (2)	0.344 (5)
H7C	0.5428	0.7067	0.9152	0.061*	0.344 (5)
H7D	0.5356	0.5545	0.8178	0.061*	0.344 (5)
N1A	0.6434 (2)	0.4075 (4)	0.9511 (2)	0.0353 (7)	0.656 (5)
N1B	0.5961 (5)	0.4532 (9)	0.9771 (5)	0.0411 (15)	0.344 (5)
C4A	0.7283 (3)	0.4418 (5)	1.0511 (2)	0.0364 (9)	0.656 (5)
H4A	0.7948	0.4042	1.0360	0.044*	0.656 (5)
C4B	0.6714 (5)	0.4927 (9)	1.0858 (5)	0.0407 (18)	0.344 (5)
H4B	0.6440	0.5817	1.1339	0.049*	0.344 (5)
O1	0.52984 (10)	0.1832 (2)	0.86955 (11)	0.0594 (5)	
O2	0.73644 (10)	0.7476 (2)	0.98285 (11)	0.0568 (4)	
C36	0.81951 (14)	0.3636 (3)	1.33444 (16)	0.0453 (5)	
H36	0.7745	0.4576	1.3464	0.054*	
C2	0.64430 (14)	0.1486 (3)	1.06256 (15)	0.0448 (5)	
H2B	0.6954	0.0592	1.0491	0.054*	
H2A	0.5935	0.0820	1.0940	0.054*	
C32	0.86314 (15)	0.1182 (3)	1.22000 (16)	0.0459 (5)	
H32	0.8476	0.0445	1.1536	0.055*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C35	0.91025 (14)	0.3310 (3)	1.41661 (16)	0.0514 (6)
H35	0.9259	0.4034	1.4835	0.062*
C33	0.95397 (15)	0.0859 (3)	1.30222 (18)	0.0516 (6)
H33	0.9991	-0.0083	1.2908	0.062*
C34	0.97791 (15)	0.1928 (3)	1.40096 (17)	0.0523 (6)
H34	1.0392	0.1719	1.4566	0.063*
C3	0.69621 (18)	0.3034 (3)	1.14461 (17)	0.0513 (6)
C31	0.79475 (13)	0.2572 (3)	1.23386 (14)	0.0408 (5)
C1	0.59269 (15)	0.2476 (3)	0.95258 (16)	0.0505 (5)
H7	0.6478 (17)	0.348 (4)	1.1835 (19)	0.074 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C6A	0.0416 (19)	0.041 (2)	0.0405 (18)	0.0053 (17)	0.0014 (14)	0.0030 (16)
C6B	0.060 (5)	0.038 (4)	0.039 (4)	0.002 (4)	0.008 (3)	-0.004 (3)
C5A	0.0446 (19)	0.043 (2)	0.0316 (16)	0.0039 (16)	0.0017 (14)	0.0012 (15)
C5B	0.040 (4)	0.040 (5)	0.046 (4)	-0.001 (3)	0.002 (3)	0.002 (3)
C7A	0.0405 (18)	0.047 (2)	0.0323 (17)	0.0032 (16)	0.0021 (13)	0.0030 (16)
C7B	0.052 (4)	0.061 (5)	0.033 (3)	0.003 (4)	-0.004 (3)	0.009 (3)
N1A	0.0368 (15)	0.0380 (16)	0.0278 (14)	0.0003 (12)	0.0012 (12)	0.0004 (11)
N1B	0.041 (3)	0.051 (4)	0.027 (3)	-0.006 (3)	0.000 (2)	0.004 (2)
C4A	0.0326 (17)	0.041 (2)	0.0320 (16)	0.0001 (15)	0.0012 (13)	-0.0001 (14)
C4B	0.039 (4)	0.046 (4)	0.034 (3)	-0.001 (3)	0.003 (3)	-0.003 (3)
01	0.0560 (8)	0.0739 (11)	0.0405 (8)	-0.0204 (8)	-0.0034 (7)	-0.0059 (7)
O2	0.0596 (8)	0.0651 (10)	0.0396 (8)	-0.0191 (7)	0.0001 (6)	0.0087 (7)
C36	0.0479 (10)	0.0486 (12)	0.0393 (11)	-0.0088 (9)	0.0103 (8)	-0.0029 (9)
C2	0.0427 (10)	0.0501 (12)	0.0392 (11)	-0.0101 (9)	0.0052 (8)	-0.0007 (9)
C32	0.0566 (12)	0.0460 (13)	0.0338 (10)	-0.0097 (9)	0.0082 (9)	-0.0034 (9)
C35	0.0500 (12)	0.0702 (16)	0.0325 (11)	-0.0172 (11)	0.0070 (9)	-0.0101 (10)
C33	0.0476 (11)	0.0527 (14)	0.0522 (13)	-0.0031 (9)	0.0073 (10)	0.0005 (11)
C34	0.0449 (11)	0.0690 (16)	0.0389 (11)	-0.0107 (11)	0.0019 (9)	0.0050 (11)
C3	0.0674 (14)	0.0440 (13)	0.0347 (11)	-0.0032 (10)	-0.0031 (10)	0.0024 (10)
C31	0.0493 (10)	0.0421 (11)	0.0287 (10)	-0.0098 (9)	0.0050 (8)	0.0019 (9)
C1	0.0506 (11)	0.0627 (15)	0.0345 (11)	-0.0167 (10)	0.0027 (9)	0.0008 (10)

Geometric parameters (Å, °)

C6A—O2	1.466 (3)	N1B—C4B	1.461 (7)
C6A—C7A	1.513 (6)	N1B—C1	1.489 (7)
С6А—Н6А	0.9700	C4A—C3	1.618 (4)
С6А—Н6В	0.9700	C4A—H4A	0.9800
C6B—O2	1.466 (7)	C4B—C3	1.516 (6)
C6B—C7B	1.476 (12)	C4B—H4B	0.9800
С6В—Н6С	0.9700	O1—C1	1.220 (2)
C6B—H6D	0.9700	C36—C35	1.377 (2)
C5A—O2	1.411 (3)	C36—C31	1.389 (3)
C5A—C4A	1.513 (5)	С36—Н36	0.9300
С5А—Н5А	0.9700	C2—C1	1.500 (3)

С5А—Н5В	0.9700	C2—C3	1.522 (3)
C5B—C4B	1.491 (10)	С2—Н2В	0.9700
C5B—O2	1.603 (7)	C2—H2A	0.9700
C5B—H5C	0.9700	C32—C33	1.378 (3)
C5B—H5D	0.9700	C32—C31	1.378 (3)
C7A—N1A	1.444 (4)	С32—Н32	0.9300
С7А—Н7А	0.9700	C35—C34	1.373 (3)
С7А—Н7В	0.9700	С35—Н35	0.9300
C7B—N1B	1.459 (8)	C33—C34	1.373 (3)
С7В—Н7С	0.9700	С33—Н33	0.9300
C7B—H7D	0.9700	С34—Н34	0.9300
N1A—C1	1.324 (3)	C3—C31	1.511 (3)
N1A—C4A	1.450 (4)	С3—Н7	0.93 (2)
O2—C6A—C7A	106.0 (3)	C5B—C4B—C3	106.7 (6)
O2—C6A—H6A	110.5	N1B—C4B—H4B	111.9
С7А—С6А—Н6А	110.5	C5B—C4B—H4B	111.9
O2—C6A—H6B	110.5	C3—C4B—H4B	111.9
С7А—С6А—Н6В	110.5	C5A—O2—C6B	114.9 (3)
Н6А—С6А—Н6В	108.7	C5A—O2—C6A	108.5 (2)
O2—C6B—C7B	106.9 (6)	C6B—O2—C6A	34.4 (3)
O2—C6B—H6C	110.3	C5A—O2—C5B	33.9 (3)
С7В—С6В—Н6С	110.3	C6B—O2—C5B	100.4 (4)
O2—C6B—H6D	110.3	C6A—O2—C5B	114.8 (3)
C7B—C6B—H6D	110.3	C35—C36—C31	120.5 (2)
Н6С—С6В—Н6D	108.6	С35—С36—Н36	119.8
O2—C5A—C4A	105.7 (3)	С31—С36—Н36	119.7
O2—C5A—H5A	110.6	C1—C2—C3	105.31 (17)
С4А—С5А—Н5А	110.6	C1—C2—H2B	110.7
O2—C5A—H5B	110.6	С3—С2—Н2В	110.7
C4A—C5A—H5B	110.6	C1—C2—H2A	110.7
H5A—C5A—H5B	108.7	С3—С2—Н2А	110.7
C4B—C5B—O2	105.2 (5)	H2B—C2—H2A	108.8
C4B—C5B—H5C	110.7	C33—C32—C31	121.53 (18)
O2—C5B—H5C	110.7	С33—С32—Н32	119.2
C4B—C5B—H5D	110.7	С31—С32—Н32	119.2
O2—C5B—H5D	110.7	C34—C35—C36	120.81 (19)
H5C—C5B—H5D	108.8	С34—С35—Н35	119.6
N1A—C7A—C6A	108.7 (3)	С36—С35—Н35	119.6
N1A—C7A—H7A	109.9	C34—C33—C32	120.0 (2)
С6А—С7А—Н7А	109.9	С34—С33—Н33	120.0
N1A—C7A—H7B	109.9	С32—С33—Н33	120.0
С6А—С7А—Н7В	109.9	C33—C34—C35	119.22 (18)
Н7А—С7А—Н7В	108.3	С33—С34—Н34	120.4
N1B—C7B—C6B	108.1 (5)	С35—С34—Н34	120.4
N1B—C7B—H7C	110.1	C31—C3—C4B	125.0 (3)
С6В—С7В—Н7С	110.1	C31—C3—C2	118.49 (18)
N1B—C7B—H7D	110.1	C4B—C3—C2	109.2 (2)
C6B—C7B—H7D	110.1	C31—C3—C4A	106.91 (19)
H7C—C7B—H7D	108.4	C4B—C3—C4A	37.5 (2)

supplementary materials

C1—N1A—C7A	125.0 (2)	C2—C3—C4A	98.62 (18)
C1—N1A—C4A	115.5 (2)	С31—С3—Н7	107.8 (14)
C7A—N1A—C4A	119.0 (3)	С4В—С3—Н7	80.2 (16)
C7B—N1B—C4B	116.9 (5)	С2—С3—Н7	107.7 (15)
C7B—N1B—C1	125.3 (5)	С4А—С3—Н7	117.6 (16)
C4B—N1B—C1	110.2 (4)	C32—C31—C36	117.90 (17)
N1A—C4A—C5A	109.0 (2)	C32—C31—C3	123.72 (17)
N1A—C4A—C3	100.6 (2)	C36—C31—C3	118.36 (19)
C5A—C4A—C3	113.8 (3)	O1—C1—N1A	124.2 (2)
N1A—C4A—H4A	111.0	O1—C1—N1B	120.7 (3)
C5A—C4A—H4A	111.0	N1A—C1—N1B	33.7 (2)
C3—C4A—H4A	111.0	O1—C1—C2	127.8 (2)
N1B—C4B—C5B	108.8 (5)	N1A—C1—C2	106.68 (17)
N1B—C4B—C3	105.4 (4)	N1B—C1—C2	107.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
C2— $H2B$ ···O2 ⁱ	0.97	2.46	3.329 (3)	149	
C7A—H7A···O1 ⁱⁱ	0.97	2.43	3.154 (4)	131	
Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1, y+1/2, -z+3/2$.					

